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Abstract. A generalization of the LMTO method for the case of crystals with spiral magnetic 
structure is suggested. The method is used for self-consistent calculations of electronic and 
magnetic properties of spiral magnetic configurations of FCC iron. The atomic volumes 
considered cover the region of known low-spin to high-spin transitions in ferromagnetic FCC 
iron. The dependence of electronic properties on the Spiral vector and number of valence 
electrons isinvestigated. The totalenergyminimum mrrespondstoanoncollinear magnetic 
structure, in accordance with recent experimental data. 

1. Introduction 

The magnetic and electronic properties of FCC iron (y-Fe) have been traditionally the 
subject of many investigations (see, e.g., experimental [ 1 4 ]  and theoretical papers 
[SS]). These are concerned with both the fundamental significance of y-Fe properties 
for the understanding of the physical nature of 3d metallic magnetism and also the 
practical interest in FCC iron alloys which show the Invar anomaly. An explanation of 
this anomaly is based on the pecularities of magnetic properties of FCC Fe [9]. 
On the other hand, information about the magneticstructure and electronic proper- 

ties of y-Fe remains contradictory owing mainly to difficulties with the experimental 
investigation Of F c c  iron at low temperatures. In most of the investigations, the presence 
of two stable magnetic states of FCC Fe has been pointed out: low spin (LS) and high spin 
(HS). However, contrary points of view have been expressed on the types of magnetic 
structure corresponding to these states. So, it follows from the results of [5-81 that the 
LS state has an antiferromagnetic (AFM) structure, but the HS state has a ferromagnetic 
(FM) structure. In [lo], the opposite conclusion was drawn. Finally, in more recent 
measurements [4] for y-Fe alloy precipitates with a small amount of CO it was pointed 
out that FccFe precipitates have a spiral-spin-density-wave (SSDW) structure. This result 
is consistent with theoretical estimations [ 111 obtained on the basis of calculations of the 
unenhanced magnetic susceptibility of FCC Fe. 

The purpose of the present paper is to present the first direct band-structure cal- 
culations of the electronic and magnetic properties of y F e  with different SSDWS cor- 
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responding to the spiral vector q = (0, 0.4). In particular for q = 0 and q = 1 (in %/a 
units. where a is the lattice constant) we obtain FM and AFM structures correspondingly. 

A direct calculation of the electronic properties of spiral magneticconfiyrations has 
become possible after a variety of methods of non-collinear magnet band-structure 
calculations have been proposed [12-141. In [12,131 it was shown that, by taking into 
account a generalized symmetry of the Hamiltonian of a spiral magnet, it is possible to 
simplify the calculations considerably. In [13], generalizations of the Korringa-Kohn- 
Rostoker (KKR) method, the augmented plane-wave method and the tight-binding 
method have been carried out for the case of crystals with a spiral magnetic structure. 
The present work is based on the formalism of the linearized muffin-tin orbital (LMTO) 
method [15]. 

The paper is organized as follows. In section 2 the derivation of the secular equation 
and Hamiltonian of the LMTO method for crystals with a spiral magnetic structure is 
given (we shall use the abbreviation LMTO-SS for this method). The peculiarities of the 
one-electron potential construction are discussed. In section 3 we present the results of 
the calculations carried out for spiral configurations of FCC iron. Various values of the 
Wigner-Seitz radius are considered. A discussion of the main results is given. 

0 N M ~ u s o u  et a1 

2. Method ofcalculation 

Let us consider a crystal with a SSDW defined in the atomicsphere approximation by the 
following spin-density distribution m(r): 

m(r) = ~ q ( I r - r , l ) l m ( l r - r i I ) I e i  (14 

ei  = (sin(@ cos(q. r;) .  sin(@) sin(q. r , ) ,  cos(@} (1b) 

where r, is the radius vector of the ith atom, q(lr - r,])  is the function equal to unity 
within the atomic sphere i and to zero outside it, 0 is the angle between atomic moments 
andthe globalz axis, e,isaunit vector determining thedirectionof the magneticmoment 
ofatomi, andqis thespin-spiral vectordefiningtheangle between the magneticmoments 
of neighbouring layers. 

Non-collinearity of magnetic moments leads to the loss of translational symmetry of 
the crystal. This makes it difficult to investigate the electronic structure of non-collinear 
magnets. If the period of the magnetic structure is commensurate with the period of 
lattice, considerations may be restricted to the magnetic unit cell, However, in this 
case the amount of calculations increases sharply. For incommensurate structures the 
traditional approach is in principle inapplicable. On the other hand, in [12,13] it was 
shown that the one-electron Hamiltonian of the spiral magnet possesses a generalized 
symmetry, which can restrict consideration to the chemical unit cell. In this case the 
calculations of the electronic structure become not much more complicated than in case 
of FM ordering. Below we discuss a formalism for the LMTO calculations of the energy 
bands of crystals with a SSDW structure. 

2.1. LMTO method for crystals with a spiral magnetic structure 

Here we give the derivation of the LMTO-SS method focused on the difference between 
secular matrices of a ferromagnet and those of crystals with a SSDW structure. 
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In a site representation the secular equation of the LMTO method for a crystal with 
FM ordering has the form 

det ~ ~ g - ' ~ ~  = 0 (2) 

g&jL'p = (PiLm(E)6ij6,,, - S ; ~ m , j L , , ) 6 e p .  

where the matrix g-' is expressed through the potential function P(E) of the LWO 
method, and the structure constant S: 

(3) 
ThematrixPcharacterizes thescatteringpropertiesof anindividual atomand is diagonal 
with respect to the site indices, i and j ,  the orbital indices L = ( l ,  m) and L' = (Z', m'), 
and thespin indices cuandp. In the caseof aferromagnet a global axisof spin quantization 
is chosen to be parallel to the direction of atomic moments. The potential function may 
be easily found if the one-electron potential within the atomic sphere is known. For the 
potential function it is convenient to use the formula [15] 

Pi/x(E) = riLn/(ViLcr - E )  + Q i ~ e  (4) 
where r, V and Q are the potential parameters of the LMTO method. 

In the case of a spiral magnetic structure (1) the P(E)-matrix is not diagonal in spin 
indices. However, the P(E)-matrix block corresponding to the ith atom is diagonal in 
the local coordinate system where the spin quantization axis is parallel to the atomic 
moment of the ith atom. This property is a consequence of the corresponding property 
of the reversed single-site t-matrix from which P(E) can be obtained after a number of 
simplifications [E]. Transformation ,of the ith block of P(E)-matrix from the local 
coordinate system associated with the ith atom into the global coordinate system can be 
carriedout by usinga spin-lrotationmatrix Ui. In particular foraspin densitydistribution 
(1) we use a Ui(O, q) matrix: 

j .  ( 5 )  
 COS(^/^) exp(i/Zq . r ; )  
-sin(8/2) exp(i/2q. ri) 

sin(e/2) exp(-i/2q. r , )  

cos(8/2) exp( -i/2q. r i )  uiw, q)  = ( , 

For fixed i, L ,  CY this transformation is defined by the formula 

= 2 ui,.(e. q)piLB'u(e,q)&+ (6) 
B' 

As the structure constant matrix S depends only on the crystal lattice, the secular 
equation of a non-collinear magnet may be written as follows: 

det 1)UPU-' - SI1 = 0. (7) 
Here, a P-matrix block for any atom i is written in its own local coordinate system, and 
the U-matrix is composed of individual Uj-matrices. It is useful to rewrite (7) as follows: 

where 

- 
det ~1g~ '~ l  = det I(P - SI( = 0 (8) 

gtLL,;~'p P ~ L , ( E ) S ~ ; ~ L C G ,  - E U,2 ,S iLw~, ;~+p  Ujpp. (9) 
d.8 

Replacing the basis functions corresponding to the form (9) of the secular matrix by 
their Bloch sums, we obtain a unitary transformation of the secular matrix: 

(10) 
1 
Nijcj 

g i ~ , ~ , ~ ( k ,  k') = - 2 exp(-ik' . ri)g;Lla,iL'P exp(+ik'.r;) 
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where N is the number of atoms. Taking into consideration the actual form of the 
matrices Ui( 0, q) for the spiral magnetic structure (l), we obtain the following expression 
for the matrix (IO): 

0 N Mryarou et a1 

GEL.r*p(k, k ' )  = [ P L ~ ( W L L , ~ ~ B  - S L , , L - ~ I W  - k ' ) .  (11) 
Here the matrix Sis defined by the formula 

sin2(@/2) +$sin(@) 

+Isin(@) cos2(@/2) i + SLL+ + 412) 

where S,,, (k)  are the structure constants of the traditional LMTO method [15]. The 
diagonality of the matrix (1 1) with respect to the wavevector index is a non-trivial result 
in the case of a non-collinear structure. It is a consequence of the generalized symmetry 
of the problem that was discussed in [12]. The form (11) of the secular matrix of the 
LMTO-SS method is very close to the corresponding formula for the KKR-SS method [13]. 

The secular equation (8) can be rewritten in the form 
det I/E - HI1 = 0 

A,,L,p(k) V L ~ ~ L L ~ ~ ~  + rY:[Q - S(k) ]Lk .pTz i .  (14) 

(13) 
where the Hamiltonian Hof the LMTO-SS method is defined by formula 

In (14). r, Vand Q are the potential parameters defined by equation (4). So, the secular 
equation of the problem is constructed from the same quantities as the secular equation 
of the traditional LMTO method. However, in contrast with the traditional method, the 
Hamiltonian (14) is non-diagonal in the spin indices. It is a result of the hybridization of 
electronic states with opposite spin projections. 

A substantial simplification of the calculations follows from the symmetry properties 
of the electronic energy spectrum in reciprocal space. In the case of a spiral structure 
these propertieshavesomeimportant peculiaritiesasdiscussedin [12,13]. In the present 
paper we deal with spiral magnetic configurations of FCC Fe which are characterized by 
the vector q parallel to the z axis and deviating from it by an angle @ = 90". For these 
structures, the spectrum symmetry may be described by the traditional formula 

&(mRk) = &(k) (15) 
where mR are rotational operations of the cubic group satisfying one of the following 
equalities: 

As a result, calculations were canied out for vectors k belonging to one eighth of the 
Brillouin zone of the FCC lattice. 
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2.2. The construction of the potential 

In order to find the self-consistent potential of a non-collinear magnet we followed the 
general density functional scheme described in [16,17]. The total energy of a crystal 
may be represented in the form of a functional 

E[n, m] = T + E,[n] + E,[n, m] (17) 

m(r) = C. v t ( r ) w i ( r )  n(r) = 2 q : ( r ) q d ( r )  (18) 
i 

where Tis the kinetic energy, EH and E,, are the Hartree and exchange-correlation 
contributions, respectively and U are the Pauli matrices. Variation in the functional (17) 
with respect to n(r) and m(r) leads to the one-electron Kohn-Sham equations 

(-v26,p + v:$)~p,(r)  = v#&). 

v:. = V$ -t v2 

(19) 

(20) 

The effective potential Veff includes the Hartree exchange-correlations contributions: 

q n ,  m] = 6 aE,,(n, m)/an B[n, m] = B aE,(n, m)/am. (22) 
The ground state of a system of interacting electrons may be described by equations 
(18)-(22) being solved self-consistently. 

The SSDW is one of the possible excitations of a system of interacting electrons. In 
this case it is necessary to consider the extension of density functional theory to a 
constrained system [18,19]. The total energy functional for crystals with &xed magnetic 
moment orientations is modified as follows: 

where h(r) is the Lagrange parameter which has the meaning of a field responsible for 
the fulfilment of the constraining condition imposed by equation (1).  In (U), U, is the 
volume of the ith atomic sphere. Since all atoms are equivalent in the local coordinate 
system, we can restrict ourselves to the consideration of one atomic sphere only, with 
ei = e = (O,O, 1). Variation in (23) leads to a modified potential within one atomic 
sphere, in the local coordinate system associated with the ith atom: 

B*[n, m] = E[n ,  m] + h[r, m] - (h[r, m] . e )  m(r)/lm(r)l. (24) 

m(r) - e/m(r)l= 0 (25) 

B*[n, lmll = 4[a&;,(n, Iml)/alm(r)ll e. (26) 

However, taking into consideration the condition k i n g  the moment orientation, i.e. 

we have, in the local-density-functional approximation E,[n, m] = &[n, Iml], 

For I?&, /mi] we used the von Barth-Hedin [16] formula. To sum up, on each step of 
the iterational process, the potential Ve" defined by equations (20)-(22) and (26) is used 
to find the potential parameters corresponding to the axis of spin quantization. These 
parameters are used further to solve the secular equation (13). The electronic eigen- 
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‘0 Figure 1. Local magnetic moment ol fcc Fe as a 

function of the spiral vector magnitude. 

functions thus obtained correspond to the local coordinate system and enable the 
projection of magnetic density within an atomic sphere in the e direction to be found 
easily. Using (20)-(22) and (26) we immediately obtain the potential for the next step 
of the iterational process. 

3. Results 

The magnetic and electronic properties of FCC Fe have been discussed intensively I5-81, 
but only collinear magnetic configurations have been taken into acount thus far. We 
applied the above-described method for the investigation of SSDWS in F c c  Fe. The spin 
spiral magnetic configurations with vector q = q(O,O, 1) and 6 = n/2 were considered. 
In particular for q = 0 and q = 1 we considered FM and AFM structures correspondingly. 

The results of self-consistent LMTO-ss calculations of the local magnetic moment 
m(q) as a function of absolute value q of the spin-spiral vector for FCC Fe at different 
Wigner-Seitz radii (S) are shown in figure 1. For spiral configurations close to the FM 
structure (q = 0) the results of our calculations are very sensitive to the lattice constant, 
The value of the magnetic moment changes from M = 1 . 0 ~ ~  at S = 2.66 au to M = 
2 . 7 , ~ ~  at S = 2.78 au. Thus, in this range of lattice constants the transition from the LS 
state at a smaller volume (S = 2.66 au) to the HS sfate at a larger volume (S = 2.69 au) 
takes place. Thcse results are in accordance with those of 161, obtained by the full- 
potential linearized-augmented-plane-wave method and fixed-spin-moment method 
[7,8] for the FM phase of FCC Fe. On the whole, all workers [&8] point out that, for FM 
FCC Fe, two states with only slightly different energies exist in the discussed interval of 
atomic volumes: Ls at low volumes and the HS at high volumes. The presence of these 
states plays an important role in the Invar effects in Fe-Ni alloys [9]. 

In 16, 81 the volume dependence of the local magnetic moment has been investigated 
for the AFM configuration too. All calculations have shown the existence of only one spin 
state for AFM FCC Fe over a considerable range of crystal volume expansions. The 
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magnetic moments of this state increase continuously with increasing volume expansion 
(seefigurel).Asfigurelshows,ourresultsforq =O,q  = lareinaccordancewiththose 
for m and AFM FCC Fe [6,8]. 

O S ) ,  
the function m(q) for S = 2.66 au differs substantially from that for S = 2.69,2.72 and 
2.78 au. At the same time forq = 1 the dependences of the m(q)-function on q are quite 
similar for all volumes. This behaviour of the m(q)-function results from the fact that 
two magnetic states exist in FM FCC Fe and only one magnetic state in AFU FCc Fe for all 
volumes studied. So at S = 2.69,2.72 and 2.78 au the variation in q from 0 to 1 leads to 
continuous transformations of the HS state for FM FCC Fe into the only state of AFM FCC 
Fe. Thus we can suppose that the stable AFM state is connected ‘genetically’ with the HS 
state of FM FCC Fe, whereas for S = 2.66 au the spiral states with small q up to q = 0.5 
are connected ‘genetically’ with the LS state Of FM FCC Fe. For q > 0.5, the nature of the 
states corresponding to the minimum of total energy is changed and these states are 
connected with only the one magnetic state of AFM FCC Fe. 

Figure 2 shows the results of the self-consistent total energy calculations E(q) as 
functions of magnitude of spin-spiral vector q. For Wigner-Seitz radii S = 2.66,2.69 
and 2.72 au the minimum of the E(q)-function corresponds to a SSDW. This result is 
consistent with experimental data [4]. It agrees also with the theoretical estimations in 
[ll] where the existence of the stable spiral structure in FCc Fe was predicted on the 
basis of the calculations of the unenhanced magnetic susceptibility. The position of the 
E(q)-minimum at an intermediate value of q is the most clearly expressed for S = 
2.72au (figure 2). There is a tendency for the difference between the energy of the 
minimum E(q)-function and the energy of the AFM state to decrease with decrease in 
volume. Note that for a Wigner-Seitz radius of S = 2.66 au, the AFM configuration has 
a lower energy than the FM configuration. The differences between the total energies of 
AFM and FM configurations change sign as S increases (figure 2). Thus there is tendency 

The analysis of the q-dependence of m(q) functions shows that, at small q (q 
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Figure 2. The total energy of the spin-spiral mag- 
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towards the formation of the FM HS state for larger S (2.78 au). At the same time for the 
=state thereistendency for non-collinear Amordering. Thisconclusionisinaccordance 
with experimental observations that FCC Fe precipitates in Cu-Au alloys (S = 2.78 au) 
are FM [2] and FCC Fe precipitates in Cu (S = 2.67 au) are AFM 131 and with the results of 
the previous calculations on FM and AFM FCC Fe [a] but contradicting the result in [lo]. 

In order to study the dependence of the position of the E(q)-minimum on the number 
of valence electrons we have carried out calculations for FCC CO, Fe and Mn with the 
same WignerSeitz radius S = 2.69 au. The results (figure 3) indicate that the increase 
in the number of valence electrons tends to stabilize ferromagnetic ordering (FCC CO). 
This result is in agreement with experimental data [ZO]. The opposite tendency is 
observed with a decreasing number of valence electrons. The minimum of the E(q)-  
function for FCC Mn shifts to an AFM configuration. This property is in accordance with 
the phase diagramobtainedin [21]. Thus,our results confirm theconclusionof [21] that, 
in the magnetic phase diagram of 3d metals with FCC lattices, Fe is located at a crossing 
point between the regions of FM and AFM ordering. 

0 N Mryasou et a1 
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